Über einige Y- und Dy-haltige Legierungsphasen

Von

E. Laube und J. B. Kusma

Aus dem Institut für Physikalische Chemie der Universität Wien

(Eingegangen am 22. Mai 1964)

Y—Zn—Hg und Dy—Zn—Cd—Hg-Legierungen werden aus den Komponenten hergestellt und kristallchemisch untersucht. DyZn kristallisiert im CsCl-Typ. YZn₂ und DyZn₂ kristallisieren im CeCu₂-Typ, YZn₅ und DyZn₅ im CaZn₅-Typ. YHg₂ ist vermutlich mit AlB₂ isotyp oder verwandt (CdJ₂-Typ). DyCd₂ kristallisiert im AlB₂-Typ, DyHg₃ im MgCd₃-Typ.

Y—(Zn, Hg) and Dy—(Zn, Cd, Hg)-alloys were prepared from the components and examined. DyZn was found to be isotypic with CsCl. YZn₂ and DyZn₂ are crystallising with the CeCu₂-type, YZn₅ and DyZn₅ with the CaZn₅-type. YHg₅ probably is either isotopic with AlB₂ or related with the CdJ₂type. DyCd₂ is crystallising with the AlB₂-type, DyHg₃ with the MgCd₃-type.

Herstellung der Proben

Die (Y, Dy)-Hg-Verbindungen

Frisch gefeiltes Yttrium bzw. Dysprosium wurde mit Quecksilber in Ampullen aus Pyrexglas unter Vakuum eingeschmolzen. Die Reaktion erfolgte unterhalb 350°C. Im Anschluß daran wurden die Proben noch 3 bis 20 Stdn. geglüht. Alle Legierungen mit Quecksilber erwiesen sich als extrem pyrophor, die Ampullen mußten unter einer Sperrflüssigkeit zerbrochen werden (Cyclohexan).

Die Legierungen (Y, Dy)—Zn und Dy—Cd wurden teils in Quarz-, teils in Pyrexampullen bei Temp. zwischen 450 und 800°C hergestellt. In einigen Fällen waren die Reaktionsprodukte mit geringen Mengen an S. E.-Oxiden verunreinigt, wodurch sich eine Konzentrationsverschiebung gegenüber der Einwaage ergab. Es sei bemerkt, daß zum Unterschied zu den analogen Mercuriden die oben angeführten Legierungen wenig luftempfindlich sind.

¹ G. Bruzzone und A. F. Ruggiero, Rend. Accad. Lincei 33, 312 (1962); 33, 465 (1962).

E. Laube u. a.: Einige Y- und Dy-haltige Legierungsphasen 1505

Y-Zn-Phasen

In diesem Zweistoff ist bisher nur die AB-Verbindung (CsCl-Typ) bekannt¹. Nach den bisherigen Ergebnissen existieren jedoch noch einige weitere Phasen, von denen zwei identifiziert werden konnten.

Die auf YZn folgende Zn-reichere Phase ist YZn_2 . Diese Kristallart erwies sich als isotyp mit $CeCu_2^2$ und besitzt nur einen geringen Homogenitätsbereich.

Im Gebiet zwischen YZn_2 und 80 At% Zn treten mindestens zwei weitere Phasen auf, die sich bis jetzt aber nicht identifizieren ließen. Dagegen wurde in Legierungen mit einem Gehalt von 82—87 At% Zn eine Phase mit CaZn₅-Typ gefaßt, die einen merklichen homogenen Bereich aufweist. Die Bildung erfolgte oberhalb 460° stark exotherm. Bei einigen Znreicheren Proben (87 At% Zn) ist röntgenographisch noch ein weiteres Liniensystem zu beobachten, welches dem von YZn₅ ähnlich ist und eventuell einer Phase Y₂Zn₁₇ zukommt.

Gitterparameter und Intensitäten wurden aus der *Debye*—*Scherrer*-Aufnahme einer Legierung gemäß Ansatz von 86 At% Zn bestimmt (Tab. 1). YZn₅: CaZn₅-Typ D 2_d, $a = 5,17_5$ kX · E., $c = 4,37_3$ kX · E, $c/a = 0,84_5$.

(hkil)	10 ³ · sin² θ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität beobachtet	Intensität berechnet
(1010)	29,0	29,4	SSS	11,4
(0001)		30,9		1,0
$(10\overline{1}1)$	60,2	60,3	s	37,0
$(11\overline{2}0)$	88,4	88,2	\mathbf{s}^+	33,0
$(20\overline{2}0)$ $(11\overline{2}1)$	119,2	${117,6}{119,1}$	sst	$iggl\{ egin{smallmatrix} 43,5\140,5 \mathrm{diffus} \end{smallmatrix} iggr\}$
$(0002)^{-1}$	123,8	123,5	ms	48,0
$(20\overline{2}1)$	148,9	148,5	\mathbf{m}	36,0
$(10\overline{1}2)$	152,7	152,9	SSS	2,0
$(21\overline{3}0)$		205,8		1,2
$(11\overline{2}2)$	211,8	211,7	SS	16,0
$(21\overline{3}1)$	236,5	236,7	ss	9,1
$(20\overline{2}2)$	241,0	241,1	s	26,0
$(30\overline{3}0)$	264,5	264, 6	SSS	5,5
(0003)		277,9		
$(30\overline{3}1)$	295,8	295,5	s	31,0
$(10\overline{1}3)$	307,1	307,3	SSS	2,9
$(21\overline{3}2)$	329,0	329,3	SSS	1,1
$(22\overline{4}0)$	353,0	352,8	m^{-}	23,7
$(11\overline{2}3)$	366,3	366,1	m-	21,5

Tabelle 1. Auswertung der Debye-Scherrer-Aufnahme einer Legierung mit 14,3 At % Y, Rest Zn. Phase YZn₅

² A. C. Larson und Don. T. Cromer, Acta Crystallogr. [Kopenhagen] 14, 7 (1961).

Taballa	1	(Fortestraina)
T aneres	- · ·	L OI DOCDOUND

(hkil)	$10^3 \cdot \sin^2 heta$ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität beobachtet	Intensität berechnet
(3140)	· · · · · · · · · · · · · · · · · · ·	382,2		0,5
$(22\overline{4}1)$		383,7		0,1
$(30\overline{3}2)$	388,3	388,1	SSS	5,6
$(20\overline{2}3)$	395,2	395,5	SSS	6,7
$(31\overline{4}1)$	413,2	413,1	SSS	3,4
$(40\overline{4}0)$	470,3	470,4	SSS	4,2
$(22\overline{4}2)$	476.4	476.3	s^+	29,8
$(21\overline{3}3)$	483.5	483.7	SSS	2,8
(0004)	493,9	494.1	888	4,8
$(40\overline{4}1))$	200,0	(501.3		(4,9
$(31\overline{4}2)($	503, 5	505.7	SSS	10.5° diffus
$(10\overline{1}4)$		523.5		0.2
$(30\overline{3}3)$	542.6	542.5	88	12.2
(3950)	558 4	558.6	888	0.2
$(11\overline{2}4)$	582.5	582.3	888	3,5
$(112\pm)$ $(29\overline{5}1))$	002,0	(589.5	666	(2.3
(3251) $(40\overline{4}2)$	593,7	593.9	SS	$\begin{cases} 2,9 \\ 6,9 \end{cases}$ diffus
$(10\overline{2}4)$	611.7	611,7	888	6,9
$(41\overline{5}0)$	617,6	617,4	SSS	3,5
$(22\overline{4}3)$		630,7		0,1
$(41\overline{5}1)$	647.9	648,3	s-	23,5
$(31\overline{4}3)$	660.3	660.1	SSS	2,4
$(32\overline{5}2)$	682.4	682.1	888	0,4
$(21\overline{3}4)$		699.9		0.4
$(50\overline{5}0)$		735.0	-	0,1
$(41\overline{5}2)$	740.9	740,9	SSS	7,6
$(40\overline{4}3)$	748.5	748,3	SSS	4,1
$(30\overline{3}4)$	759.0	758.7	SSS	3,8
$(50\overline{5}1)$	765.7	765.9	SSS	1,4
(0005)		772.0		
(33Ã0)	793 9	793.8	888	2.3
$(10\overline{15})$	801.6	801.4	888	1.4
(1010) $(49\overline{6}0))$	001,0	(823.2	555	(8.3
$(\frac{4200}{8361})$	823,4	824 7	\mathbf{m}	13.8
(3301))	836 5	836.5	999	3.0
(3233) $(32\overline{4}4)$	8467	846.9	m	32.0
(2244) $(49\overline{6}1)$	954 9	854 1	9	10.6
(4201)	004,4	(858.5	5	(03
(0002)	859,7	1860.2	s^+	15.8
$(1120)_{j}$	976 9	876.3	999	0.6
(3144) (9095)	880 7	880 K	88	6.5
(2020) (41 <u>5</u> 9)	009,1 905 1	805 3	m+	38.5
(4100) (5120)	090,1	011 A		0.4
(0100) (02 <u>8</u> 0)	017 4	017 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	64
(3302)	911,4	511,0 049 2	ଗର ସସ	5.2
(0101)	944,0 046 7	344,0 016 7	aa m+	32.7
1 1 1 1 1 1 1	M44.00 (111	114.1

Unter 0,1 berechnete Intensitäten wurden mit - bezeichnet.

Das System Dy-Zn

Die Ergebnisse decken sich hier vollständig mit jenen im Zweistoff Y—Zn. Da die Radien von Y und Dy fast gleich sind, unterscheiden sich auch die Gitterparameter nur wenig.

Die Phase DyZn kristallisiert wieder im CsCl-Typ. DyZn₂ gehört zum CeCu₂-Typ und DyZn₅ hat CaZn₅-Struktur.

DyZn: $a = 3,54_8$

DyZn₅: $a = 5,17_0$, $c = 4,37_3$, $c/a = 0,84_6$.

Eine Auswertung ist in den Tab. 2 und 3 gegeben.

Tabelle 2. Auswertung einer Debye-Scherrer-Aufnahme von DyZn

(hkil)	$10^3 \cdot \sin^2 \theta$ gemessen	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(100)	46,8	46,9	SS	13,9
(110)	93,9	93,9	sst	63,1
(111)	140,9	140,8	SSS	4,3
(200)	188,1	187,8	s	11,2
(210)	235,0	234,7	SS	5,7
(211)	281,6	281,6	\mathbf{mst}	22,0
(220)	375,7	375,5	s ⁻	6,9
$(221) \\ (300) $	422,6	422,6	ss	${2,1 \\ 0,5}$
$(310)^{2}$	469,4	469,4	\mathbf{s}^+	10,1
(311)	516, 5	516,3	SSS	1,7
(222)	563, 5	563,3	SS	2,7
(320)	610,0	610,2	SSS	1,6
(321)	657,0	657,2	mst	15,7
(400)	750,8	751,0	ss	2,1
$(322) \\ (410) $	798,1	798,0	SS	$\left\{\begin{array}{c}1,9\\1,9\end{array}\right.$
(330) (411)	844,9	844,9	m-	5,3 10,7
(331)	891,8	891,9	ss	2,7
(420)	938,6	938,8	m^{-}	17,4

Tabelle 3. Auswertung einer Debye-Scherrer-Aufnahme von $DyZn_5$

(hkil)	10³ · sin² θ beobachtet	10 ³ · sin ² θ berechnet	Intensität geschätzt	Intensität berechnet	
(1010)		29,5		2,9	
(0001)		30,9		11,9	
(10T1)	60,2	60,3	m	119,0	
$(11\overline{2}0)$	88,4	88,4	\mathbf{s}^{-}	71,0	
$(20\overline{2}0)$	110.9	(117,9	/	(77,0	
$(11\overline{2}1)$	119,2	\119,3	sst	223,0	

Tabelle 3. (Fortsetzung)

(hkil)	$10^3 \cdot \sin^2 \theta$ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(0002)	123,8	123,5	ss	66,5
$(20\overline{2}1)$	148,9	148,7	888	11,9
$(10\overline{1}2)$	153,3	153,0	888	1,1
$(21\overline{3}0)$		206,2		27,0
$(11\overline{2}2)$	211,8	211,9	SS	35,5
$(21\overline{3}1)$	237,2	237,1	88	29,8
$(20\overline{2}2)$	241,0	241,3	\mathbf{s}^-	47,3
$(30\overline{3}0)$	265,3	265,1	SSS	12,5
(0003)	277,7	277,9	SSS	0,7
$(30\overline{3}1)$	295.8	296,0	s^{-}	49,7
(10T3)	307.0	307.4	SSS	10.0
$(21\overline{3}2)$	329.8	329.7	SSS	0.8
$(22\overline{4}0)$	353.8	353.5	8	33.5
$(11\overline{2}3)$	366.3	366.3	s+	34.8
$(31\overline{4}0)$		383.0	~	0.3
$(22\overline{4}1)$	384 1	384.4	888	2.4
$(30\overline{3}2)$	388.4	388.6	888	12.6
$(20\overline{2}3)$	396.0	395.7	222	2.0
(2023) $(21\overline{4}1)$	414.0	413.0	200 9 -	12.0
(3141)	471.9	471 4	e-	8 1
(4040)	477 2	477.0	8999	4.9
(2242) (9199)	411,0	494 1	888	
(2133)	404,0	404,1	88	9,0 7.0
(0004)	490,9	509.9	888	1,0
(4041)	502,5	502,2 502 5	888	1,5
(3142)		000,0 500,6		0,4
(1014)		549.0		10.7
(3033)	542,7	543,0	s	19,7
(3250)		559,7		0,2
(1124)	582,6	582,5	SSS	8,0
(3251)	590,3	590,6	SSS	8,2
(4042)	594,6	594,9	SS	13,1
(2024)	611,7	611,9	SSS	12,9
(4150)	618,5	618,7	SSS	7,9
(2243)		631,4		1,6
(4151)	649,5	649,5	\mathbf{s}^+	19,2
(3143)	661,1	660,9	SS	8,3
(3252)		683,2		0,3
(2134)		700,3	—	0,3
(5050)		736,5		0,1
(4152)	742,4	742,2	SS	17,5
(4043)		749,3	_	1,1
(3034)	759,0	759,2	SSS	8,5
(5051)	767,2	767,4	SSS	4,6
(0005)		772,0		0,3
(3360)	795,3	795,4	SSS	4,6
(1015)	801,6	801,5	SSS	4,8
(4260)	825.4	$\int 824,9$	st-	$\int 15,7$
(3361)∫	020,1	լ826,3	~~~	23,0

(hkil)	10 ³ · sin ² 9 beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(3253)	837.8	837.6	s	10.9
$(22\overline{4}4)$	847,3	847,6	\mathbf{m}^+	45,8
$(42\overline{6}1)$		855,8		1,6
$(50\overline{5}2)$ $(11\overline{2}5)$	860,3	${860,0 \\ 860,4}$	s^+	$egin{cmatrix} 0,4\\ 26,0 \end{bmatrix}$
$(31\overline{4}4)'$		877,1		0,8
$(20\overline{2}5)$	889,7	889,8	SSS	1,0
$(41\overline{5}3)$	896,6	896,6	m	62,0
$(51\overline{6}0)$		913,3		0,4
$(33\overline{6}2)$	918,9	918,9	SSS	14,8
$(51\overline{6}1)$	943,9	944,1	SS	18,4
$(42\overline{6}2)$	948,3	948,4	\mathbf{m}^+	61,5
$(40\overline{4}4)$	965,5	965.5	m-	38.1

Tabelle 3. (Forsetzung)

Das System Y-Hg

In diesem Zweistoff sind die Phasen YHg und YHg₃ bereits bekannt³. Die Phase YHg₂ kristallisiert hexagonal. Es ist jedoch noch ungeklärt, ob ein AlB₂-Typ oder eine Variante desselben in Richtung auf den CdJ₂-Typ vorliegt. Die Verschiebung der Hg-Atome aus der speziellen Punktlage $\frac{1}{3} \frac{2}{3} \frac{1}{2}, \frac{2}{3} \frac{1}{3}, \frac{1}{2}$ für den AlB₂-Typ, entsprechend einem Parameter z ($\frac{1}{3} \frac{2}{3} z, \frac{2}{3} \frac{1}{3} \overline{z}$) beträgt jedoch höchstens 0,05.

YHg₂:
$$a = 4.76_1$$
 kX. E., $c = 3.52_9$ kX. E., $c/a = 0.74_1$.

Im Gebiet Y—YHg₃ scheint außer den genannten Phasen YHg, YHg₂ und YHg₃ keine weitere Verbindung mehr zu existieren.

DyHg₃ und DyCd₂

DyHg₃ kristallisiert wie YHg₃ im MgCd₃-Typ (DO₁₉). Die Überstruktur der hexagonal dichten Packung läßt sich lediglich an einer Koinzidenz (21 $\overline{3}1$), (11 $\overline{2}2$) feststellen. Die Auswertung ist in Tab. 4 aufgezeichnet.

Tabelle 4. Auswertung einer Debye-Scherrer-Aufnahme von $DyHg_3$, CuK α -Strahlung

(hkil)	10 ³ . sin ² f beobachtet	10 ³ · sin ² ^g berechnet	Intensität berechnet	Intensität geschätzt	
x (10 $\overline{10}$)		18,5	1,2	······	
x (1011)		43,3	2,8		
$x (11\overline{2}0)$	Name of the second s	55,4	0,1		

³ E. Laube und H. Nowotny, Mh. Chem. 94, 851 (1963).

(hkil)	10 ³ · sin ² θ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität berechnet	Intensität geschätzt
(2020)	73,7	73,8	10,0	s
$(20\overline{2}1)$	00.6	₍ 98,7	40,4)	act
(0002)	98,0	$\{99, 5$	8,9∫	880
$x (10\overline{1}2)^{2}$		118,0		
$x (21\overline{3}0)$		129,2		
$x (21\overline{3}1)$	154 5	∫154,1	0,1	000
$x (11\overline{2}2)$	104,0	(154, 9)	0,1∫	666
$x~(30\overline{3}0)^{2}$		166,1		
$(20\overline{2}2)$	173,3	173,3	5,9	s
$x (30\overline{3}1)$		191,0	—	
$(22\overline{4}0)$	221,2	221,5	8,0	s
$x (21\overline{3}2)$		228,7	,	
x (31 $\overline{4}0$)		240,0		
$x (10\overline{1}3)$		242,3		
$x~(31\overline{4}1)$		264,8		
$x (30\overline{3}2)$		265, 6		
$(40\overline{4}0))$	297 4	∫295,4	1,3	s+ diffus
(2023)∫	207,1	(297,8	7,4]	
(4041)	320.8	$\int 320,2$	6,6)	\mathbf{m}^+
(2242)	020,0	(321,0	8,8)	
x(3142)		399,5		
x (3250)		350,7		
x(2133)	<u>.</u>	353,0		_
x (3251)		375,6		_
x (4150)	<u> </u>	387,7		
x(3033)		389,9	1.6)	
(4042)	396,0	1394,9	1,0	SS
(0004))	,	(397,9	1,0)	
x(4151)		412,0		
x(1014)		410,4		
x(3232)		450,2		
x(1124)		400,0		
$x (3050) = x (21\overline{A}2)$		463.8		
(9094)	472 1	471 7	1.2	888
$(202\pm)$	±12,1	486.4		
x (3051) x (4152)		487.2		
$x (33\overline{6}0)$		498.4		
$(42\overline{6}0))$		(516.1	1.1)	
$(40\overline{4}3)$	518,3	519.2	3.4	s−
$x(21\overline{3}4)$		527.1		
$(42\overline{6}1)$	541.8	541,7	6,6	\mathbf{s}^+
$x(50\overline{52})$		561,0		
$x (30\overline{3}4)$		564,0		_
$x(51\overline{6}0)$		572,3		_
$x (32\overline{5}3)$	<u> </u>	574,5		;
x (51 $\overline{61}$)		597,1		
x (33 $\overline{6}2$)	<u> </u>	597,9		

Tabelle 4.	(Fortsetzung)

(hkil)	10 ³ · sin² θ beobachtet	10 ³ · sin ² θ berechnet	Intensität berechnet	Intensität geschätzt
$x (41\overline{5}3)$		611,5		
$(42\overline{6}2))$	010 1	(616, 4)	2,1)	
$(22\overline{4}4)$	018,4	619,4	4,1	S
$x (31\overline{4}4)$		637,9	'	
$x (10\overline{1}5)$		640,3		
$(60\overline{6}0)$	664,4	664, 6	2,1	SS
x (51 $\overline{6}2$)		671,8		
x (4370)		683,0		
$x (50\overline{5}3)$		683,3		
$(60\overline{61})$		689.4		
$(40\overline{4}4)$		(693.3	1.0)	
$(20\overline{2}5)$	695, 4	695.6	3.1	s
x (4371)		707.0		
$x (52\overline{7}0)$		713.9		
$(42\overline{6}3)$	740.9	740.7	6 6	m-
x(5271)	110,0	744.8		111
x (3254)		748 6	_	
$x (21\overline{3}5)$		751.0		
$(\underline{6}0\overline{6}9)$	764 9	751,0	4.5	
(0002)	704,2	70±,1 709 5	т , о	5
x (4372) x (4154)		705 B		
a (9095)		765,0	Arrest and an	
x (3033)		787,9		
x(0170)		793,8		and here
x (3153)		796,1	·	
x(0171)		818,6		Anna a Press
$x (5272) (50\overline{z}4)$		819,4		
x(5054)		859,4		
x(3145)		861,8		
(4480)	886,4	886,1	3,3	\mathbf{s}^{\perp}
(6063)		888,4		
x~(6172)		893,3	No.	
(0006)	895,1	895,3	1,1	SSS
x~(3364)		896, 3		
$x(70\overline{7}0)$		904,5		, e `
$x~(53\overline{8}0)$		904,5		
x~(4373)		906,8		
$x (10\overline{1}6)$		913,8		
$(42\overline{6}4)$	016 0	(914,8	3,8)	1.00
$(40\overline{4}5)$	910,8	1917,2	5,8	st diffus
$x(70\overline{7}1)$		929,4	· ,	
$x (53\overline{8}1)$		929, 4		
$x~(52\overline{7}3)$	A	943,7		
$x(11\overline{2}6)$		950,7		<u> </u>
$(62\overline{8}0)$	959,9	959.9	3.0	SS
$(20\overline{2}6)$	969.2	969.1	3.5	8
x $(52\overline{6}4)$		970.2		
$x(32\overline{5}5)$		972.5		

Intensitäten, die Werte unter 0,1 bei der Berechnung ergaben, wurden mit — bezeichnet. \boldsymbol{x} Überstrukturlinien.

(in kX. E.)

 $\rm DyCd_2$ gehört zu den Verbindungen des AlB2-Typs (C 32). Eine Auswertung ist in Tab. 5 gegeben.

DyHg₃:
$$a = 6,53_1$$
, $c = 4,87_3$, $c/a = 0,74_6$

DyCd₂:
$$a = 4,89_1$$
, $c = 3,44_3$, $c/a = 0,70_4$

Tabelle 5. Auswertung einer Debye-Scherrer-Aufnahme von DyCd_2

(hkil)	10 ³ · sin ² θ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(1010)		32,9		10,4
(0001)		49,9		4,2
$(10\overline{1}1)$	82,6	82,8	mst	230,0
$(11\overline{2}0)$	98,6	98,8	m	174,0
$(20\overline{2}0)$		131,7		1,7
$(11\overline{2}1)$	148,9	148,6	SSS	5,3
$(20\overline{2}1)$	181,3	181,6	s	68,7
(0002)	199,1	199,4	SS	20,1
$(21\overline{3}0)$	231,4	(230, 5)		(1,5
$(10\overline{1}2)$		232,3	SSS	1,5
$(21\overline{3}1)^{2}$	280.8	280,4	\mathbf{m}	6 4,8
$(30\overline{3}0)$	005 4	(296,4	a de	58,9
$(11\overline{2}2)$	297,4	${298,2}$	SU	117,8
$(20\overline{2}2)$		`331,1		0,8
$(30\overline{3}1)$	346,3	346,2	SSS	1,1
$(22\overline{4}0)$	395,2	395,2	ss	18,0
$(31\overline{4}0)$		428,1		0,5
$(21\overline{3}2)$	<u> </u>	429,9		1,0
$(22\overline{4}1)$		445,0		0,8
(0003)		448,7		0,1
$(31\overline{4}1)$	478,2	477,9	s	28,1
$(10\overline{1}3)$	481,7	481,6	SS .	14,0
$(30\overline{3}2)$	495,7	495,8	s	26,9
$(40\overline{4}0)$		526,9		0,2
$(11\overline{2}3)$		547,5		0,4
$(40\overline{4}1)$	576,5	576,7	ss	11,7
$(20\overline{2}3)$	580, 5	580, 4	ss	11,7
$(22\overline{4}2)$	594,6	594,6	s	23,2
$(32\overline{5}0)$		625,7		0,4
$(31\overline{4}2)$	<u> </u>	627,5	_	0,8
$(32\overline{5}1)$	675,9	675, 5	s	23,4
$(21\overline{3}3)$	679,2	679,2	S	23,4
$(41\overline{5}0)$	691,3	691,5	s	23,1
$(40\overline{4}2)$	<u> </u>	726,3		0,5
$(41\overline{5}1)$		741,4		1,2
$(30\overline{3}3)$	—	745,1		0,6
(0004)	797, 4	797,6	SSS	5,9
$(50\overline{5}0)$	—	823,3	—	0,3
$(32\overline{5}2)$		825,1		1,1

(hkil)	$10^3 \cdot \sin^2 \theta$ beobachtet	$10^3 \cdot \sin^2 \theta$ berechnet	Intensität geschätzt	Intensität berechnet
(1014)		830,5		0,6
$(22\overline{4}3)$		843,9		0,7
$(50\overline{5}1)$	873,3	873,1	ss	17,5
$(31\overline{4}3)$	876,8	876,8	m	35,0
$(33\overline{6}0)$	889,1	889,1	ss	18,5
$(41\overline{5}2)$	890,8	890,9	\mathbf{st}	74,2
$(11\overline{2}4)$	896,6	896,4	m	36,4
$(42\overline{6}0)$	<u> </u>	922,0		0,8
$(20\overline{2}4)$		929,3		0,9
$(33\overline{6}1)$	-	939,0		1,1
$(42\overline{6}1)$	971,9	971,9	\mathbf{st}	76,0
$(40\overline{4}3)$	975,5	975,6	\mathbf{mst}	40,7
· · · ·	,	,		· · · · · · · · · · · · · · · · · · ·

Tabelle 5 (Fortsetzung)

Dem Vorstand des Instituts für Physikalische Chemie der Universität Wien, Herrn Professor Dr. H. Nowotny, danken wir für stete Hilfsbereitschaft und anregende Diskussionen.